Proefschrift

Moradi, H., Vossoughi, G., and Salarieh, H. (2013). Optimal robust control of drug delivery in cancer chemotherapy: a comparison between three control approaches. Computer Methods and Programs in Biomedicine , 112(1):69–83. 76, 109 Mu¨ller, F. (1878). U¨ ber die vortheile der mimicry bei schmetterlingen . Verlag Elsevier. 3 Muros, F., Maestre, J., You, L., and Stan˜kova´, K. (2017). Model predictive control for optimal treatment in a spatial cancer game. In 2017 IEEE 56th Annual Conference on Decision and Control (CDC) , pages 5539–5544. 76, 109 Murray, J. (1990a). Optimal control for a cancer chemotherapy problem with general growth and loss functions. Mathematical Biosciences , 98(2):273–287. 14, 64 Murray, J. (1990b). Some optimal control problems in cancer chemotherapy with a toxicity limit. Mathematical Biosciences , 100(1):49–67. 14, 64 Murtaza, M., Dawson, S., Tsui, D., Gale, D., et al. (2013). Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature , 497(7447):108–112. 21 Nagy, J. (2005). The ecology and evolutionary biology of cancer: a review of mathematical models of necrosis and tumor cell diversity. Mathematical Biosciences & Engineering , 2(2):381–418. 27 Nakanishi, A. and Hirata, Y. (2019). Practically scheduling hormone therapy for prostate cancer using a mathematical model. Journal of Theoretical Biology , 478:48–57. 109 Nakazawa, M., Paller, C., and Kyprianou, N. (2017). Mechanisms of therapeutic resistance in prostate cancer. Current Oncology Reports , 19(2):1–12. 81 Nam, A., Mohanty, A., Bhattacharya, S., Kotnala, S., Achuthan, S., Hari, K., Nathan, A., Rangarajan, G., Massarelli, E., Levine, H., et al. (2020). Suppressing chemoresistance in lung cancer via dynamic phenotypic switching and intermittent therapy. bioRxiv . 98 Nanda, M. and Durrett, R. (2017). Spatial evolutionary games with weak selection. Proceedings of the National Academy of Sciences , 114(23):6046–6051. 98 Nanda, S., Moore, H., and Lenhart, S. (2007). Optimal control of treatment in a mathematical model of chronic myelogenous leukemia. Mathematical Biosciences , 210(1):143–156. 14, 64 Nash, J. F. et al. (1950). Equilibrium points in n-person games. Proceedings of the National Academy of Sciences , 36(1):48–49. 13, 81 Navin, N., Kendall, J., Troge, J., Andrews, P., Rodgers, L., McIndoo, J., Cook, K., Stepansky, A., Levy, D., Esposito, D., et al. (2011). Tumour evolution inferred by single- cell sequencing. Nature , 472(7341):90–94. 8 181

RkJQdWJsaXNoZXIy MjY0ODMw