Proefschrift

3.42 General discussion 207 83. Magnuson A, Bruinooge SS, Singh H, Wilner KD, Jalal S, Lichtman SM, et al. Modernizing Clinical Trial Eligibility Criteria: Recommendations of the ASCO-Friends of Cancer Research Performance Status Work Group. Clinical Cancer Research 2021;27:2424–2429. doi:10.1158/1078-0432.CCR-203868. 84. Kim ES, Bruinooge SS, Roberts S, Ison G, Lin NU, Gore L, et al. Broadening Eligibility Criteria to Make Clinical Trials More Representative: American Society of Clinical Oncology and Friends of Cancer Research Joint Research Statement. JCO 2017;35:3737–3744. doi:10.1200/JCO.2017.73.7916. 85. Osarogiagbon RU, Vega DM, Fashoyin-Aje L, Wedam S, Ison G, Atienza S, et al. Modernizing Clinical Trial Eligibility Criteria: Recommendations of the ASCO–Friends of Cancer Research Prior Therapies Work Group. Clin Cancer Res 2021;27:2408–2415. doi:10.1158/1078-0432.CCR-20-3854. 86. DeFilippis EM, Echols M, Adamson PB, Batchelor WB, Cooper LB, Cooper LS, et al. Improving Enrollment of Underrepresented Racial and Ethnic Populations in Heart Failure Trials: A Call to Action From the Heart Failure Collaboratory. JAMA Cardiology 2022;7:540–548. doi:10.1001/jamacardio.2022.0161. 87. Heart Failure Collaboratory. Heart Failure Collaboratory | About 2022. https://hfcollaboratory.com/about/ (accessed December 6, 2022). 88. Zuidgeest MGP, Goetz I, Meinecke A-K, Boateng D, Irving EA, Thiel GJM van, et al. The GetReal Trial Tool: design, assess and discuss clinical drug trials in light of Real World Evidence generation. Journal of Clinical Epidemiology 2022;149:244–253. doi:10.1016/j.jclinepi.2021.12.019. 89. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, Center for Biologics Evaluation and Research. Adaptive Designs for Clinical Trials of Drugs and Biologics. Guidance for Industry. Silver Spring, MD: Center for Drug Evaluation and Research; 2019. 90. Stuart EA, Bradshaw CP, Leaf PJ. Assessing the generalizability of randomized trial results to target populations. Prev Sci 2015;16:475–485. doi:10.1007/s11121-014-0513-z. 91. Stuart EA, Cole SR, Bradshaw CP, Leaf PJ. The use of propensity scores to assess the generalizability of results from randomized trials. J R Stat Soc Ser A Stat Soc 2001;174:369–386. doi:10.1111/j.1467-985X.2010.00673.x. 92. Susukida R, Crum RM, Ebnesajjad C, Stuart EA, Mojtabai R. Generalizability of findings from randomized controlled trials: application to the National Institute of Drug Abuse Clinical Trials Network. Addiction 2017;112:1210–1219. doi:10.1111/add.13789. 93. Ackerman B, Schmid I, Rudolph KE, Seamans MJ, Susukida R, Mojtabai R, et al. Implementing statistical methods for generalizing randomized trial findings to a target population. Addict Behav 2019;94:124–132. doi:10.1016/j.addbeh.2018.10.033. 94. Inoue K, Hsu W, Arah OA, Prosper AE, Aberle DR, Bui AAT. Generalizability and Transportability of the National Lung Screening Trial Data: Extending Trial Results to Different Populations. Cancer Epidemiology, Biomarkers & Prevention 2021;30:2227–2234. doi:10.1158/1055-9965.EPI-21-0585. 95. Sen A, Goldstein A, Chakrabarti S, Shang N, Kang T, Yaman A, et al. The representativeness of eligible patients in type 2 diabetes trials: a case study using GIST 2.0. J Am Med Inform Assoc 2018;25:239–247. doi:10.1093/jamia/ocx091. 96. Tipton E. How Generalizable Is Your Experiment? An Index for Comparing Experimental Samples and Populations. Journal of Educational and Behavioral Statistics 2014;39:478–501. doi:10.3102/1076998614558486.

RkJQdWJsaXNoZXIy MjY0ODMw