Generalizability of HFrEF trials 31 15. Ponikowski P, Veldhuisen DJ van, Comin-Colet J, Ertl G, Komajda M, Mareev V, McDonagh TA, Parkhomenko A, Tavazzi L, Levesque V, Mori C, Roubert B, Filippatos G, Ruschitzka F, Anker SD. Rationale and design of the CONFIRM-HF study: a double-blind, randomized, placebo-controlled study to assess the effects of intravenous ferric carboxymaltose on functional capacity in patients with chronic heart failure and iron deficiency. ESC Heart Fail2014;1:52–58. 16. Voors AA, Shah SJ, Bax JJ, Butler J, Gheorghiade M, Hernandez AF, Kitzman DW, McMurray JJV, Wirtz AB, Lanius V, Laan M van der, Solomon SD. Rationale and design of the phase 2b clinical trials to study the effects of the partial adenosine A1-receptor agonist neladenoson bialanate in patients with chronic heart failure with reduced (PANTHEON) and preserved (PANACHE) ejection fraction. Eur J Heart Fail2018;20:1601–1610. 17. Brugts JJ, Linssen GCM, Hoes AW, Brunner-La Rocca HP, CHECK-HF investigators. Real-world heart failure management in 10,910 patients with chronic heart failure in the Netherlands : Design and rationale of the Chronic Heart failure ESC guideline-based Cardiology practice Quality project (CHECK-HF) registry. Neth Heart J Mon J Neth Soc Cardiol Neth Heart Found2018;26:272–279. 18. Savarese G, Vasko P, Jonsson Å, Edner M, Dahlström U, Lund LH. The Swedish Heart Failure Registry: a living, ongoing quality assurance and research in heart failure. Ups J Med Sci2018;0:1–5. 19. Schoffer O. Statistik in Sachsen. SAS im Forschungsdatenzentrum der Statistischen Landesämter Sachsen; 2008. p. 123–126. 20. Sartipy U, Dahlström U, Edner M, Lund LH. Predicting survival in heart failure: validation of the MAGGIC heart failure risk score in 51,043 patients from the Swedish heart failure registry. Eur J Heart Fail2014;16:173–179. 21. Loomis D, Richardson D, Elliott L. Poisson regression analysis of ungrouped data. Occup Environ Med2005;62:325–329. 22. Breslow N, Day N. Statistical Methods in Cancer Research Volume II: The Design and Analysis of Cohort Studies. 23. Rahimi K, Bennett D, Conrad N, Williams TM, Basu J, Dwight J, Woodward M, Patel A, McMurray J, MacMahon S. Risk prediction in patients with heart failure: a systematic review and analysis. JACC Heart Fail2014;2:440–446. 24. Buuren S van, Groothuis-Oudshoorn K. mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software2011;45:1–67. 25. White IR, Royston P, Wood AM. Multiple imputation using chained equations: Issues and guidance for practice. Stat Med2011;30:377–399. 26. R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2019. 27. StataCorp. Stata Statistical Software: Release 15. College Station, TX: StataCorp LP; 2017. 28. Wang TS, Hellkamp AS, Patel CB, Ezekowitz JA, Fonarow GC, Hernandez AF. Representativeness of RELAX-AHF clinical trial population in acute heart failure. Circ Cardiovasc Qual Outcomes 2014;7:259–268. 29. Rodrigues G, Tralhão A, Aguiar C, Freitas P, Ventosa A, Mendes M. Is the PARADIGM-HF cohort representative of the real-world heart failure patient population? Rev Port Cardiol Orgao Of Soc Port Cardiol Port J Cardiol Off J Port Soc Cardiol2018;37:491–496. 30. Ezekowitz JA, Hu J, Delgado D, Hernandez AF, Kaul P, Leader R, Proulx G, Virani S, White M, Zieroth S, O’Connor C, Westerhout CM, Armstrong PW. Acute heart failure: perspectives from a randomized trial and a simultaneous registry. Circ Heart Fail2012;5:735–741. 31. Schulz K, Grimes DA. Essential Concepts in Clinical Research: Randomised Controlled Trials and Observational Epidemiology. Elsevier Health Sciences; 2018. 32. U.S. Food & Drug Administration. Enrichment strategies for clinical trials to support determination of effectiveness of human drugs and biological products guidance for industry. Maryland: U.S Food & Drug Administration; 2019 Mar. 2.1
RkJQdWJsaXNoZXIy MjY0ODMw