& 166 REFERENCES Hanson, R. K., Bourgon, G., Helmus, L., & Hodgson, S. (2009). The principles of effective correctional treatment also apply to sexual offenders: A meta-analysis. Criminal Justice and Behavior, 36(9), 865–891. http:// dx.doi.org/10.1177/0093854809338545 Hanson, R. K., & Bussière, M. T. (1998). Predicting relapse: A meta-analysis of sexual offender recidivism studies. Journal of Consulting and Clinical Psychology, 66(2), 348–362. http://dx.doi.org/10.1037/0022006X.66.2.348 Hanson, R. K., & Harris, A. J. R. (2000a). Where should we intervene? Dynamic predictors of sex offense recidivism. Criminal Justice and Behavior, 27(1), 6–35. http://dx.doi.org/10.1177/0093854800027001002 Hanson, R. K., & Harris, A. J. R. (2000b). The Sex Offender Need Assessment Rating (SONAR): A method for measuring change in risk levels (Corrections Research User Report 2000–1). Department of the Solicitor General of Canada. http://www.publicsafety.gc.ca/cnt/rsrcs/pblctns/sx-ffndr-nd/index-eng.aspx *Hanson, R. K., & Harris, A. J. R. (2001). A structured approach to evaluating change among sexual offenders. Sexual Abuse, 13(2), 105–122. https://doi.org/10.1177/107906320101300204 Hanson, R. K., Harris, A. J. R., Letourneau, E., Helmus, L. M., & Thornton, D. (2018). Reductions in risk based on time offense-free in the community: Once a sexual offender, not always a sexual offender. Psychology, Public Policy, and Law, 24(1), 48–63. https://doi.org/10.1037/law0000135 Hanson, R. K., Harris, A. J. R., Scott, T., & Helmus, L. (2007). Assessing the risk of sexual offenders on community supervision: The Dynamic Supervision Project (Corrections Research user report 2007–05). Public Safety Canada. http://www.publicsafety.gc.ca/cnt/rsrcs/pblctns/ssssng-rsk-sxl-ffndrs/ssssng-rsk-sxl-ffndrs-eng. pdf Hanson, R. K., & Morton-Bourgon, K. E. (2004). Predictors of sexual recidivism: An updated meta-analysis (Corrections User Report No. 2004-02). Ottawa, ON, Canada: Public Safety Canada. https://www. publicsafety.gc.ca/cnt/rsrcs/pblctns/2004-02-prdctrs-sxl-rcdvsmpdtd/2004-02-prdctrs-sxl-rcdvsm-pdtdeng.pdf Hanson, R. K., & Morton-Bourgon, K. E. (2005). The characteristics of persistent sexual offenders: A metaanalysis of recidivism studies. Journal of Consulting and Clinical Psychology, 73(6), 1154–1163. http:// dx.doi.org/10.1037/0022-006X.73.6.1154 Hanson, R. K., & Morton-Bourgon, K. E. (2007). The accuracy of recidivism risk assessments for sexual offenders: A meta-analysis (User report 2007–01). Public Safety and Emergency Preparedness. https://www.ccoso. org/sites/default/files/import/accuracy-of-risk-assessments.pdf Hanson, R. K., & Morton-Bourgon, K. E. (2009). The accuracy of recidivism risk assessments for sexual offenders: A meta-analysis of 118 prediction studies. Psychological Assessment, 21(1), 1–21. http://dx.doi. org/10.1037/a0014421 Hanson, R. K., Newstrom, N., Brouillette-Alarie, S., Thornton, D., Robinson, B. E., & Miner, M. H. (2020). Does reassessment improve prediction? A prospective study of the sexual offender treatment intervention and progress scale (SOTIPS). International Journal of Offender Therapy and Comparative Criminology, 65(16), 1775–1803. https://doi.org/10.1177/0306624X20978204 *Harkins, L., Thornton, D., & Beech, A. (2009, October). The use of dynamic risk domains assessed using psychometric measures to revise relative risk assessment using RM 2000 and Static 2002. Presentation at the 28th Annual Research and Treatment Conference of the Association for the Treatment of Sexual Abusers, Dallas, TX. *Hart, S. D., Jackson, K., Healey, J., & Watt, K. A. (2008, July). Validation of the Risk for Sexual Violence Protocol in adult sexual offenders. Presentation at the annual meeting of the International Association of Forensic Mental Health Services, Vienna, Austria. Hasselblad, V., & Hedges, L. V. (1995). Meta-analysis of screening and diagnostic tests. Psychological Bulletin, 117(1), 167–178. http://dx.doi.org/10.1037/0033-2909.117.1.167 Haslbeck, J., & Waldorp, L. J. (2016). Mgm: Structure estimation for time-varying mixed graphical models in highdimensional data. ArXiv. http://arxiv.org/abs/1510.06871v2 Haslbeck, J. M. B., & Waldorp, L. J. (2020). mgm: estimating yime-varying mixed graphical models in highdimensional data. Journal of Statistical Software, 93(8), 1–46. https://doi.org/10.18637/jss.v093.i08 Hayes, A. M., & Andrews, L. A. (2020). A complex systems approach to the study of change in psychotherapy. BMC Medicine, 18(1), 197. https://doi.org/10.1186/s12916-020-01662-2 Heffernan, R., & Ward, T. (2017). A comprehensive theory of dynamic risk and protective factors. Aggression and Violent Behavior, 37, 129–141. https://doi.org/10.1016/j.avb.2017.10.003 Heffernan, R., & Ward, T. (2019). Dynamic risk factors, protective factors and value-laden practices. Psychiatry, Psychology and Law, 26(2), 312–328. https://doi.org/10.1080/13218719.2018.1506721 Heffernan, R., & Ward, T. (2020). Dynamic risk factors for sexual offending. Causal considerations. Springer. Heffernan, R., Ward, T., VandeVelde, S. & Van Damme, L. (2019). Dynamic risk factors and constructing explanations of offending: The risk-causality method. Aggression and Violent Behavior, 44, 47-56. https:// doi.org/10.1016/j.avb.2018.11.009 Helmus, L. M., & Babchishin, K. M. (2017). Primer on risk assessment and the statistics used to evaluate its accuracy. Criminal Justice and Behavior, 44(1), 8–25. https://doi.org/10.1177/0093854816678898
RkJQdWJsaXNoZXIy MjY0ODMw