Proefschrift

& 167 REFERENCES *Helmus, L., Babchishin, K. M., & Blais, J. (2012). Predictive accuracy of dynamic risk factors for aboriginal and nonaboriginal sex offenders: An exploratory comparison using STABLE-2007. International Journal of Offender Therapy and Comparative Criminology, 56(6), 856–876. http://dx.doi.org/10.1177/0306624X11414693 Helmus, L., Babchishin, K. M., & Hanson, R. K. (2013). The predictive accuracy of the Risk Matrix 2000: A metaanalysis. Sexual Offender Treatment, 8(2), 1–24. http://www.sexual-offender-treatment.org/125.html *Helmus, L., & Hanson, R. K. (2012, October). Dynamic risk assessment using STABLE-2007: Updated follow-up and new findings from the Dynamic Supervision Project. Paper presented at the 31st Annual Research and Treatment Conference of the Association for the Treatment of Sexual Abusers, Denver, CO. Helmus, L., Hanson, R. K., Babchishin, K. M., & Mann, R. E. (2013). Attitudes supportive of sexual offending predict recidivism: A meta-analysis. Trauma, Violence, & Abuse, 14(1), 34–53. http://dx.doi. org/10.1177/1524838012462244 *Helmus, L., Hanson, R. K., Babchishin, K. M., & Thornton, D. (2015). Sex offender risk assessment with the Risk Matrix 2000: Validation and guidelines for combining with the STABLE-2007. Journal of Sexual Aggression, 21(2), 136 –157. http://dx.doi.org/10.1080/13552600.2013.870241 Helmus, L., Hanson, R. K., Thornton, D., Babchishin, K. M., & Harris, A. J. R. (2012). Absolute recidivism rates predicted by Static-99R and Static-2002R sex offender risk assessment tools vary across samples: A metaanalysis. Criminal Justice and Behavior, 39(9), 1148–1171. https://doi.org/10.1177/0093854812443648 Hillbrand, M., & Waite, B. M. (1994). The everyday experience of an institutionalized sex offender: An idiographic application of the experience sampling method. Archives of Sexual Behavior 23(4), 453–463. https://doi. org/10.1007/BF01541409 Hoebeke, Y., Blanchard, M. A., Contreras, A., & Heeren, A. (2022). An experience sampling measure of the key features of rumination. Clinical Neuropsychiatry, 19(5), 288–297. https://doi.org/10.36131/ cnfioritieditore20220504 Hoekstra, R. H. A., Epskamp, S., & Borsboom, D. (2022): Heterogeneity in individual network analysis: Reality or illusion? Multivariate Behavioral Research. Advance online publication. https://doi.org/10.1080/00273171. 2022.2128020 Höing, M. A. (2015). Empowering circles: Circles of support and accountability. OCC De Hoog B.V. Holper, L., Mokros, A., & Habermeyer, E. (2023). Moderators of sexual recidivism as indicator of treatment effectiveness in persons with sexual offense histories: An updated meta-analysis. Sexual Abuse. Advance online publication. https://doi.org/10.1177/10790632231159071 Ioannidis, J. P. A. (2005). Why most published research findings are false. PLoS Medicine, 2(8), e124. https://doi. org/10.1371/journal.pmed.0020124 Ioannidis, J. P. A. (2012). Why science is not necessarily self-correcting. Perspectives on Psychological Science, 7(6), 645–654. https://doi.org/10.1177/1745691612464056 Isvoranu, A. M., van Borkulo, C. D., Boyette, L. L., Wigman, J. T., Vinkers, C. H., Borsboom, D., & Group Investigators (2017). A network approach to psychosis: Pathways between childhood trauma and psychotic symptoms. Schizophrenia Bulletin, 43(1), 187–196. https://doi.org/10.1093/schbul/sbw055 Isvoranu, A. M., Epskamp, S., Waldorp, L. J., & Borsboom, D. (Eds.), (2022). Network psychometrics with R: A guide for behavioral and social scientists. Routledge Taylor and Francis Group. Jones, P. J., Mair, P., & McNally, R. J. (2018). Visualizing psychological networks: A tutorial in R. Frontiers in Psychology, 9, 1742. https://doi.org/10.3389/fpsyg.2018.01742 Jumper, S (2021). Issues in working with transgender individuals who sexually harm. Current Psychiatry Reports, 23(42), 1–9. https://doi.org/10.1007/s11920-021-01251-x Kelders, S. M., & Kip, H. (2019). Development and initial validation of a scale to measure engagement with eHealth technologies. In CHI EA 2019 - Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems [3312917] Association for Computing Machinery (ACM). https://doi. org/10.1145/3290607.3312917 Kelders, S. M., Kip, H., & Greeff, J. (2020). Psychometric evaluation of the TWente Engagement with Ehealth Technologies Scale (TWEETS): Evaluation Study. Journal of Medical Internet Research, 22(10), 1-11. https://www.jmir.org/2020/10/e17757 Kip, H., & Bouman, Y. H. A. (2021). A perspective on the integration of eHealth in treatment of offenders: Combining technology and the risk-need-responsivity model. Frontiers in Psychiatry, 12, 703043. https:// doi.org/10.3389/fpsyt.2021.703043 Kip, H., Sieverink, F., van Gemert-Pijnen, L. J. E. W.C., Bouman, Y. H. A., & Kelders, S. M. (2020). Integrating people, context, and technology in the implementation of a web-based intervention in forensic mental health care: Mixed-methods study. Journal of Medical Internet Research, 22(5). 1-24. https://www.jmir.org/2020/5/ e16906/ Knack, N., Winder, B., Murphy, L., & Fedoroff, J. P. (2019). Primary and secondary prevention of child sexual abuse. International Review of Psychiatry, 31(2), 181-194. https://doi.org/10.1080/09540261.2018.1541872 *Knight, R. A., & Thornton, D. (2007). Evaluating and improving risk assessment schemes for sexual recidivism: A long-term follow-up of convicted sexual offenders (Document No. 217618). U.S. Department of Justice. https://www.ncjrs.gov/pdffiles1/nij/grants/217618.pdf

RkJQdWJsaXNoZXIy MjY0ODMw