& 171 REFERENCES Ruscio, J. (2008). A probability-based measure of effect size: Robustness to base rates and other factors. Psychological Methods, 13(1), 19–30. http://dx.doi.org/10.1037/1082-989X.13.1.19 Russell, D., Higgins, D., & Posso, A. (2020). Preventing child sexual abuse: A systematic review of interventions and their efficacy in developing countries. Child Abuse & Neglect, 102, 104395. https://doi.org/10.1016/j. chiabu.2020.104395 Robinaugh, D. J., Hoekstra, R. H. A., Toner, E. R., & Borsboom, D. (2019). The network approach to psychopathology: A review of the literature 2008–2018 and an agenda for future research. Psychological Medicine, 50(3), 353–366. https://doi.org/10.1017/S0033291719003404 R Core Team. (2018). R: A language and environment for statistical computing [Computer software]. R Foundation for Statistical Computing. R Core Team. (2022). R: A language and environment for statistical computing [computer software]. R Foundation for Statistical Computing. https://www.r-project.org/ Santos, H. P., Jr., Kossakowski, J. J., Schwartz, T. A., Beeber, L., & Fried, E. I. (2018). Longitudinal network structure of depression symptoms and self-efficacy in low-income mothers. PLOS ONE, 13(1), e0191675. https://doi.org/10.1371/journal.pone.0191675 *Saum, S. (2004). A comparison of an actuarial risk prediction measure (Static-99) and a stable dynamic prediction measure (Stable-2000) in making risk predictions for a group of sexual offenders (Unpublished doctoral dissertation). The Fielding Institute. http://psycnet.apa.org/PsycINFO/2007-99018-302 Scheffer, M., Carpenter, S. R., Lenton, T. M., Bascompte, J., Brock, W., Dakos, V., van de Koppel, J., van de Leemput, I. A., Levin, S. A., van Nes, E. H., Pascual, M., & Vandermeer, J. (2012). Anticipating critical transitions. Science, 338, 6105, 344–348. https://doi.org/10.1126/science.1225244 Schmidt, S., Heffernan, R., & Ward, T. (2022). Why dynamic risk factors cannot be applied universally: Their normative nature and the importance of cultural awareness in risk assessment and intervention. In G. C. Liell, M. J. Fisher, L. F. Jones (Eds.), Challenging bias in forensic psychological assessment and testing: Theoretical and practical approaches to working with diverse populations (pp. 52-68). Routledge. Schmucker, M., & Lösel, F. (2015). The effects of sexual offender treatment on recidivism: An international metaanalysis of sound quality evaluations. Journal of Experimental Criminology, 11, 597–630. http://dx.doi. org/10.1007/s11292-015-9241-z Schmucker, M., & Lösel, F. (2017). Sexual offender treatment for reducing recidivism among convicted sex offenders: A systematic review and meta-analysis. Campbell Systematic Reviews, 13(1), 1–75. https://doi. org/10.4073/csr.2017.8 *Scoones, C. D., Willis, G. M., & Grace, R. C. (2012). Beyond static and dynamic risk factors: The incremental validity of release planning for predicting sex offender recidivism. Journal of Interpersonal Violence, 27(2), 222–238. http://dx.doi.org/10.1177/0886260511416472 Serin, R. C., Lloyd, C. D., Helmus, L., Derkzen, D. M., & Luong, D. (2013). Does intra-individual change predict offender recidivism? Searching for the Holy Grail in assessing offender change. Aggression and Violent Behavior, 18(1), 32–53. http://dx.doi.org/10.1016/j.avb.2012.09.002 Seto, M. C. (2019). The motivation-facilitation model of sexual offending. Sexual Abuse, 31(1), 3–24. https://doi. org/10.1177/1079063217720919 *Smeth, A. (2013). Evaluating risk assessment among sex offenders: A comparative analysis of static and dynamic factors (Unpublished doctoral dissertation). Ottawa, Ontario, Canada: Carleton University. https:// curve.carleton.ca/system/files/theses/27517_1.pdf Smid, W. J., Kamphuis, J. H., Wever, E. C., & Van Beek, D. J. (2014). A quasi-experimental evaluation of highintensity inpatient sex offender treatment in the Netherlands. Sexual Abuse, 28(5), 469–485. http://dx.doi. org/10.1177/1079063214535817 Smid, W. J., & Wever, E. C. (2019). Mixed emotions: An incentive motivational model of sexual deviance. Sexual Abuse: Journal of Research and Treatment, 31(7), 731–764. https://doi.org/10.1177/1079063218775972 Smid, W. J., Wever, E. C., & van den Heuvel, N. (2023). Dynamic individual risk networks: Personalized network modelling based on Experience sampling data. Research Department, Van der Hoeven Kliniek. [Manuscript submitted for publication]. *Sowden, J. N. (2013). Examining the relationship of risk, treatment readiness, and therapeutic change to recidivism in a sample of treated sex offenders (Unpublished doctoral dissertation). University of Saskatchewan. http://hdl.handle.net/10388/ETD-2013-11-1305 Stein M. B., & Barrett-Connor E. (2000). Sexual assault and physical health: Findings from a population-based study of older adults. Psychosomatic Medicine, 62(6), 838–843. https://doi.org/10.1097/00006842200011000-00014 Stinson, J. D., & Becker, J. V. (2013). Treating sex offenders: An evidence-based manual. The Guilford Press. Stinson, J. D., Becker, J. V., & McVay, L. A. (2016). Multimodal self-regulation theory of sexual offending, In D. Boer, A. R. Beech, & T. Ward (Eds.), The Wiley handbook on the theories, assessment and treatment of sexual offending (Vol. 1, pp. 103–122). Wiley-Blackwell. Stinson, J. D., Becker, J. V., & Sales, B. D. (2008). Self-regulation and the etiology of sexual deviance: Evaluating causal theory. Violence and Victims, 23(1), 35–51. https://doi.org/10.1891/0886-6708.23.1.35
RkJQdWJsaXNoZXIy MjY0ODMw